|
In descriptive set theory, a subset of a Polish space has the perfect set property if it is either countable or has a nonempty perfect subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a perfect set. As nonempty perfect sets in a Polish space always have the cardinality of the continuum, a set with the perfect set property cannot be a counterexample to the continuum hypothesis, stated in the form that every uncountable set of reals has the cardinality of the continuum. The Cantor–Bendixson theorem states that closed sets of a Polish space ''X'' have the perfect set property in a particularly strong form; any closed set ''C'' may be written uniquely as the disjoint union of a perfect set ''P'' and a countable set ''S''. Thus it follows that every closed subset of a Polish space has the perfect set property. In particular, every uncountable Polish space has the perfect set property, and can be written as the disjoint union of a perfect set and a countable open set. It follows from the axiom of choice that there are sets of reals that do ''not'' have the perfect set property. Every analytic set has the perfect set property. It follows from sufficient large cardinals that every projective set has the perfect set property. == References == * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Perfect set property」の詳細全文を読む スポンサード リンク
|